New insight into the phylogeny of the orchid bees (Apidae: Euglossini)

Document Type: Original Article

Author

Department of Biology, Faculty of Sciences, University of Shiraz, Shiraz, Iran

Abstract

Orchid bees occur across the American continent, from the southern United States to Paraguay and northern Argentina. There are 240 described species of orchid bees. The phylogeny of these bees has been studied by several researchers. In most cases, phylogenetic trees with different topologies have been introduced, because the tree topology of the orchid bees is very unstable. In this work, using 244 gene sequences consisting of three mitochondrial genes (cytochrome b,  cytochrome c oxidase I, and 16S ribosomal RNA) and a single nuclear gene (RNA polymerase II), the phylogenetic relationships within the tribe Euglossini were re-evaluated. Although we cannot describe the phylogenetic tree of the tribe Euglossini with confidence yet; I found that there are probably two distinct evolutionary pathways or two distinct evolutionary lineages in this tribe. Moreover, I found that the evolutionary pathway of the genus Euglossa is probably different from other genera belonging to the tribe Euglossini. Nevertheless, definite viewpoints on this matter need more studies.

Keywords


Bembe B. 2007. Revision der Euglossa cordata-Gruppe und Untersuchungen zur Funktionsmorphologie und Faunistik der Euglossini (Hymenoptera, Apidae). Entomofauna, Supplement, vol. 14, p. 1-146.

Brand P., Saleh N., Pan H., Li C., Kapheim K.M., Ramírez S.R. 2017. The nuclear and mitochondrial genomes of the Facultatively eusocial orchid bee Euglossa dilemma. G3 (Bethesda) 7(9):2891-2898.

Carvalho-Filho F., Oliveira F. 2017. Notes on the nesting biology of five species of Euglossini (Hymenoptera: Apidae) in the Brazilian Amazon. Entomo Brazilis 10(1): 64-68.

Darveau C.A., Hochachka P.W., Kenneth J., Welch C., Roubik D.W., Suarez R.K. 2005. Allometric scaling of flight energetics in Panamanian orchid bees: a comparative phylogenetic approach. Journal of Experimental Biology 208: 3581-3591.

Engel M.S. 1999. The first fossil Euglossa and phylogeny of the orchid bees (Hymenoptera: Apidae; Euglossini). American Museum Novitates 3272: 1–14.

Felsenstein J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783-791.

Fernandes A., Werneck H.A., Pompolo S.G., Lopes D.M. 2013. Evidence of separate karyotype evolutionary pathway in Euglossa orchid bees by cytogenetic analyses. Anais da Academia Brasileira de Ciências 85(3): 937-944.

Ferronato M.C.F., Giangarelli D.C., Mazzaro D., Uemura N., Sofia S.H. 2017. Orchid bee (Apidae: Euglossini) communities in Atlantic forest remnants and restored areas in Paraná State, Brazil. Neotropical Entomologydoi: 10.1007/s13744-017-0530-2.

Griswold T., Herndon J.D., Gonzalez V.H. 2015. First record of the orchid bee genus Eufriesea Cockerell (Hymenoptera: Apidae: Euglossini) in the United States. Zootaxa 3957(3): 342–346.

Ghassemi-Khademi T. 2016. Taxonomy and comparative biology of world and Iranian honey bees (Volume 1), Jahad-e Daneshgahi Publication, Addabil branch, Ardabil, Iran.

Huelsenbeck J.P., Ranala B. 2004. Frequentist properties of Bayesian posterior probabilities of phylogenetic trees under simple and complex substitution models. Systematic Biology 53: 904-913.

Kawakita A., Ascher J.S., Sota T., Kato M., Roubik D.W. 2008. Phylogenetic analysis of the corbiculate bee tribes based on 12 nuclear protein-coding genes (Hymenoptera:Apoidea: Apidae). Apidologie 39: 163–175.

Kimura M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16:111-120.

Kimsey L.S. 1982. Systematics of bees of the genus Eufriesea (Hymenoptera, Apidae). University of California Publications, Entomology 95: 1–125.

Kimsey L.S. 1987. Generic relationships within the Euglossini. Systematic Entomology 12: 63–72.

McCravy KW., Van-Dyke J., Creedy T.J., Roubik D.W. 2016. Orchid bees (Hymenoptera: Apidae: Euglossini) of Cusuco National Park, State of Cortés, Honduras. Florida Entomologist 99(4): 765-768.

Michener C.D. 1990. Classification of the Apidae. University of Kansas Science Bulletin 54: 75–119.

Michener CD. 2007. The bees of the world (Second Edition). The Johns Hopkins University Press, Baltimore, United States of America, 972 p.

Michel-Salzat A., Cameron S.A., Oliveira M.L. 2004. Phylogeny of the orchidbees (Hymenoptera: Apinae:Euglossini): DNA and morphology yield equivalent patterns. Molecular Phylogenetics and Evolution 32: 309–323.

Moure J.S., Melo G.A., Faria L.R.R. 2012. Euglossini Latreille, 1802. In: Moure JS, Urban D, Melo GAR (orgs) Catalogue of bees (Hymenoptera,Apoidea) in the Neotropical Region-online.

Nemesio A. 2009. Orchid bees (Hymenoptera: Apidae) of the Brazilian Atlantic Forest. Zootaxa (Auckland) 2041:1-242.

Noll F.B. 2002. Behavorial phylogeny of corbiculate Apidae (Hymenoptera: Apinae), with special reference to social behavior. Cladistics 18: 137–153.

O''''Toole C., Raw A. 2004. Bees of the world. New York: Facts on File, 192 p.

Oliveira ML. 2006. New hypothesis of phylogenetic relationships for the genera of Euglossini, and for the species of Eulaema Lepeletier, 1841 (Hymenoptera: Apidae: Euglossini) (Hymenoptera: Apidae: Euglossini). Acta Amazonica 36: 273–286.

Penha R.E.S., Gaglianone M.C., Almeida F.S., Boff S.V., Sofia S.H. 2014. Mitochondrial DNA of Euglossa iopoecila (Apidae:Euglossini) reveals two distinct lineages for this orchid bee species endemic to the Atlantic Forest. Apidologie 46(3): 346–358.

Ramírez S.R., Roubik W.D., Skov C., Pierce N.E. 2010. Phylogeny, diversification patterns and historical biogeography of Euglossine orchid bees (Hymenoptera: Apidae). Biological Journal of the Linnean Society 100: 552-572.

Roig-Alsina A., Michener C.D. 1993. Studies of the phylogeny and classification of long-tongued bees (Hymenoptera: Apoidea). The University of Kansas science bulletin. 55: 123–173.

Ronquist F., Huelsenbeck J.P. 2003. MRBAYES 3: Bayesian phylogenetic inference under mixedmodels. Bioinformatics 19: 1572-1574.

Sayyadzadeh G., Eagderi S., Esmaeili H. 2016. A new loach of the genus Oxynoemacheilus from the Tigris River drainage and its phylogenetic relationships among the nemacheilid fishes (Teleostei: Nemacheilidae) in the Middle East based on mtDNA COI sequences. Iranian Journal of Ichthyology 3(4): 236–250.

Schultz T.R., Engel M.S., Prentice M. 1999. Resolving conflict between morphological and molecular evidence for the origin of eusociality in the corbiculate bees (Hymenoptera: Apidae): a hypothesis-testing approach. University of Kansas publications, Museum of Natural History Publication 24: 125–138.

Schultz T.R., Engel M.S., Ascher J.S. 2001. Evidence for the origin of eusociality in the corbiculate bees (Hymenoptera: Apidae). Journal of the Kansas Entomological Society 74: 10–16.

Tamura K., Stecher G., Peterson D., Filipski A., and Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30:2725-2729.

Win N.Z., Choi E.Y., Park J., Park J.K. 2017. Molecular phylogenetic relationship of the subfamily Nymphalinae (Lepidoptera: Nymphalidae) in Myanmar, inferred from mitochondrial gene sequences. Journal of Asia-Pacific Biodiversity 10:86-90.