Inventory of the quantitative characteristics of single oak trees with nonparametric methods of Support Vector Machines and Decision Tree on satellite images of WorldView-2 and UAV

Document Type: Original Article

Authors

1 Department of Forest Sciences, University of ‎Ilam, Ilam, Iran‎

2 Department of Natural Resources and Environment, College of Agriculture, Shiraz University, ‎Shiraz, Iran

10.22120/jwb.2018.84168.1022

Abstract

To achieve effective forests management it is necessary to obtain reliable statistical data like the number of stands, diameter at breast height (DBH), and ‎crown volume. While traditional methods of the forests measurements are very labor intensive and time consuming, remote sensing can provide up-to-date and low cost ‎data. In comparing ot other sensors, the satellite WV-2 ‎generate very high resolution images that can be used in the forest management practices. In the present study, we aimed to estimate parameters related on the single trees characteristics using decision tree ‎method and Support Vector Machines classification with complex matrix evaluation and Area ‎under operating characteristic curve (AUC) method. We also used UAV Phantom 4 ‎Pro images from two distinct geographic regions. Support Vector Machines ‎classification method generated the highest accuracy in estimating single trees parameters. This study confirms that using WV-2 data it is possible to extract the necessary ‎parameters of the single trees and relied them in the forest management practices.

Keywords


Allen C. D., Macalady A. K., Chenchouni H., Bachelet D., McDowell N., Vennetier M., et al. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259, 660–684.

Amami R.,  Ben Ayed D., Ellouze N. 2012. An Empirical compares on of SVM and some supervised learning algorithms for vowel recognition. International Journal of Intelligent Information Processing(IJIIP). volume3. number1. march 2012.

Benz U. C., Hofmann P., Willhauck G., Lingenfelder I., Heynen M. 2004. Multiresolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. Isprs Journal of Photogrammetry and Remote Sensing, 58, 239-258.

Breshears D. D., Cobb N. S., Rich P. M., Price K. P., Allen C. D., Balice R. G., et al. 2005. Regional vegetation die-off in response to global-change-type drought. Proceedings of the National Academy of Sciences, 102, 15144–15148.

Burges C.J.C. 1996. Simplified support vector decision rules. In Lorenza Saitta, editor, Proceedings of the Thirteenth International Conference on Machine Learning, pages 71–77, Bari, Italy, 1996. Morgan Kaufman.

Carnicer J., Coll M., Ninyerola M., Pons X., Sánchez G., Peñuelas J. 2011. Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proceedings of the National Academy of Sciences of the United States of America, 108, 1474–1478.

Chubey M. S., Franklin S. E., Wulder M. A . 2006. Object-based analysis of Ikonos-2 imagery for extraction of forest inventory parameters. Photogrammetric Engineering and Remote Sensing, 72, 38.

Clark D.B., Castro C.S., Alvarado L.D.A., Read J.M. 2004a. Quantifying mortality of tropical rain forest trees using high spatial- resolution satellite data, Ecological Letters, 7:52–59.

Clark D.B., Read J.M., Clark M.L., Cruz A.M., Dotti M.F., Clark D.A. 2004b. Application of 1-m and 4-m resolution satellite data to ecological studies of tropical rain forests, Ecological Applications, 14:61–74.

Conchedda G., Durieux L., Mayaux P., Iee e. 2007. Object-based monitoring of land cover changes in mangrove ecosystems of Senegal., In 4th International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, 44-49. Louvain, BELGIUM.

Desclee B., Bogaert P., Defourny P. 2006 .Forest change detection by statistical object-based method. Remote Sensing of Environment, 102, 1-11.

Dji. 2016. PHANTOM 4 User Manual. Chine.

Franklin SE (ed) . 2001. Remote sensing for sustainable forest management. Lewis Publishers, New York, pp 296–300.

Friedl M.A., Brodley, C.E. 1997. Decision tree classification of land cover from remotely sensed data. Remote Sensing of Environment 61, 399–409.

Ghasemian N., Akhondzadeh, M. 2016. Comparison of Methods of Artificial Neural Networks, Support Vector Machine and Decision Tree to Identify Clouds in Landsat 8 Satellite Images. Geospatial Engineering Journal 7 (4) :25-36. (In Persian).

Gillis M., Leckie, D .1993. Forest inventory mapping procedures across Canada. Forestry Canada, PNFI information report PI-X-114. 79 pp.

Gougeon F.A., Leckie, D.G. 1999. Forest regeneration: Individual tree crown detection techniques for density and stocking assessment, Proceedings of the International Forum on Automated Interpretation of High Spatial Resolution Digital Imagery for Forestry, Victoria, B.C., Pacific Forestry Center, Canadian Forest Service, Natural Resources Canada, pp. 11–23.

Gong P., Biging G.S., Lee S.M., Mei X., Sheng Y., Pu R., Xu B., Schwarz K., Mostafa, M. 1999. Photo ecometrics for forest inventory, Geographic Information Science, 5:9–14.

Hay G. J., Castilla G., Wulder M. A., Ruiz J. R. 2005. An automated object-based
approach for the multiscale image segmentation of forest scenes. International Journal of Applied Earth Observation and Geoinformation, 7, 339-359.

Heumann, B.W. 2011. Object-based classification of mangroves using a hybrid decision tree—support vector machine approach. Remote Sensing 3: 2440–2460.

Juniati E., Arrofiqoh, E. N. 2017. Comparison of Pixel-Based and Object-Based classification using parameters and non-parameters approach for the  pattern consistency of multiscale land cover. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W7, 2017.

Jensen J.R. 2005. Introductory Digital Image Processing: A Remote Sensing Perspective, third edition. Prentice Hall, Inc, NJ, USA.

Kim J., Kim, B.S., Savarese, S. 2012. Comparing image classification methods: K-nearest-neighbor and support-vector-machines. Applied Mathematics in Electrical and Computer Engineering. Harvard, Cambridge. USA.

Kelly M., Shaari, D., Guo, Q.H., Liu, D.S. 2004. A comparison of standard and hybrid classifier methods for mapping hardwood mortality in areas affected by “sudden oak death,” Photogrammetric Engineering & Remote Sensing 70:1229–1239.

Koch B., Heyder, U., Weinacker, H. 2006. Detection of individual tree crowns in airborne lidar data. Photogrammetric Engineering and Remote Sensing 72, 357–363.

Laasasenaho J. 1982. Taper Curve and Volume Functions for Pine, Spruce and Birch. Communicationes Instituti forestalis Fenniae 108: 1–74.

Leckie D.G., Yuan, X., Ostaff, D.P., Piene, H., Maclean, D.A. 1992. Analysis of high spatial resolution multispectral MEIS imagery for spruce budworm damage assessment on a single tree basis, Remote Sensing of Environment 40:125–136.

Levesque J., King, D.J. 1999. Airborne digital camera image semivariance for evaluation of forest structural damage at an acid mine site, Remote Sensing of Environment 68:112–124.

Liang S., Liu, J., Liang, M. 2004. Ecological study on the mangrove communities in Beilun Hekou national nature reserve. Journal of Guangxi Normal University 22 (2): 70–76 (in Chinese with English abstract).

Mather P.M. 2003. An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sensing of Environment 86, 554–565.

Myint S.W., Giri C. P., Le W., Zhu Z. L., Gillette S. C. 2008. Identifying mangrove species and their surrounding land use and land cover classes using an object-oriented approach with a lacunarity spatial measure. Giscience & Remote Sensing, 45, 188-208.

Niphadkar M., Nagendra H., Tarantino C., Adamo M., Blonda P. 2017. Comparing Pixel and Object-Based approaches to map an understory invasive shrub in tropical mixed forests. Frontiers in Plant Science.

Okojie J. 2017. Assessment of forest tree structural parameter extractability from optical imaging UAV dataset. Thesis msc University of Twente, Enschede, the Netherlands.

Pande-Chhetri R., Abd-Elrahman A., Liu T., Morton J., Wilhelm V. L. 2017. Object-based classification of wetland vegetation using very high-resolution unmanned air system imagery. European Journal of Remote Sensing 50(1): 564–576

Phillips O. L., Aragão L. E. O. C., Lewis S. L., Fisher J. B., Lloyd J., Lόpez-González G., et al. 2009. Drought sensitivity of the Amazon rainforest. Science 323: 1344–1347.

Qian Y., Zhou W., Yan, J., Li W., Han L. 2015.Comparing machine learning classifiers for Object-Based land cover classification using very high resolution imagery. Remote Sensing 7: 153-168.

Quinlan J.R. 1986. Induction of decision trees. Mach. Learn. 1: 81–106.

Quinlan J. R . 1992. Learning with continuous classes. In proceedings AI, 92 (Adams& Sterling, Eds), Singapore: World Scientific, PP: 343-348.

Quinlan J.R. 1993. C4.5 Programs for Machine Learning. Morgan Kaufmann Publishers, Inc., San Mateo, USA.

Raczko E., Zagajewski B. 2017. Comparison of support vector machine, random forest and neural network classifiers for tree species classification on airborne hyperspectral APEX images. European Journal of Remote Sensing, 50(1): 144-154.

Repola J. 2009. Biomass equations for Scots pine and Norway spruce in Finland. Silva Fennica 43: 625–647.

Schowengerdt R. A. 1997. Remote Sensing: Models and Methods for Image Processing. Academic, San Diego, USA.

Sedliak M., Sačkov I., Kulla L. 2017.Classification of tree species composition using a combination of multispectral imagery and airborne laser scanning data. Central European Forestry Journal 63: 1–9.

Shrestha R., Wynne R. H. 2012. Estimating biophysical parameters of individual trees in an urban environment using small footprint discrete-return imaging Lidar Remote Sensing 4: 484-508,

Shafri H.Z.M., Ramle F.S.H. 2009. A Comparison of Support Vector Machine and Decision Tree Classifications Using Satellite Data of Langkawi Island. Information Technology Journal 8(1): 64-70.

Shao Yang., Lunetta R. S. 2012. Comparison of support vector machine, neural network, and CART algorithms for the land cover classification using MODIS time-series data. ISPRS. Journal of Photogrammetry and Remote Sensing 70: 78-87.

Steinwart  Ingo., Christmann Andreas. 2008. Support Vector Machines. Springer-Verlag, New York, 2008. ISBN: 978-0-387-77241-7.

Thanh Noi P., Kappas M. 2018. Comparison of random forest, k-nearest neighbor, and support vector Mmachine classifiers for land cover classification using Sentinel-2 imagery. Sensors. Vol 18.

Tooke T.R., Coops N.C., Goodwin N.R., Voogt J.A. 2009. Extracting urban vegetation characteristics using spectral mixture analysis and decision tree classifications. Remote Sensing of Environment 113: 398–407.

van Mantgem P. J., Stephenson N. L., Byrne J. C., Daniels L. D., Franklin J. F., Fulé P. Z., et al. 2009. Widespread increase of tree mortality rates in the western United States. Science 323: 521–524.

Wang L., Sousa W. P., Gong P. 2004. Integration of object-based and pixel-based classification for mapping mangroves with IKONOS imagery. International Journal of Remote Sensing 25: 5655-5668.

Wen D., Huang X., Liu H., Liao W., Zhang L. 2017. Semantic Classification of Urban Trees Using Very High Resolution Satellite Imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

Woodcock C. E., Strahler A. H. 1987. The factor of scale in remote sensing. Remote Sensing of Environment 21: 311-332.

Wulder M. A., White J. C., Hay G. J., Castilla G. 2008. Towards automated segmentation of forest inventory polygons on high spatial resolution satellite imagery. Forestry Chronicle, 84: 221-230.

Xu M., Watanachaturaporn P., Varshney P.K., Arora M.K. 2005. Decision tree regression for soft classification of remote sensing data. Remote Sensing of Environment 97: 322–336.

Zo¨hrer F.1980. Forstinventur. Ein Leitfaden fu¨ r Studium und Praxis. Pareys Studientexte 26. Verlag Paul Parey. Hamburg und Berlin. 207 pp.